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Abstract. In the framework of a generalized iterative scheme introduced previously to account for the
non-analytic coupling dependence associated with the renormalization-group invariant mass scale Λ, we
establish the self-consistency equations of the extended Feynman rules (Λ-modified vertices of zeroth
perturbative order) for the three-gluon vertex, the two ghost vertices, and the two vertices of massless
quarks. Calculations are performed to one-loop-order, in Landau gauge, and at the lowest approximation
level (r = 1) of interest for QCD. We discuss the phenomenon of compensating poles inherent in these
equations, by which the formalism automatically cancels unphysical poles on internal lines, and the role
of composite-operator information in the form of equation-of-motion condensate conditions. The observed
near decoupling of the four-gluon conditions permits a solution to the 2-and-3-point conditions within
an effective one-parameter freedom. There exists a parameter range in which one solution has all vertex
coefficients real, as required for a physical solution, and a narrower range in which the transverse-gluon
and massless-quark propagators both exhibit complex-conjugate pole pairs.

1 Summary of the extended iterative scheme

The spontaneous emergence of a renormalization-group
(RG) invariant mass scale Λ [1] from the renormalization
process is arguably the most important nonperturbative
effect in strictly renormalizable quantum field theories,
since this quantity sets the scale for all dimensionful ob-
servables (except those dominated by heavy extraneous
masses). Its coupling dependence,

(Λ2)R = ν2 exp

{
− 2

g(ν)∫
dg′

[β(g′)]R

}

= ν2 exp
{
− (4π)2

β0g(ν)2

[
1 +O(g2)

]
R

}
, (1.1)

(where R denotes a renormalization scheme and ν the ar-
bitrary renormalization scale within R, and where β0 > 0
in an asymptotically free theory) is non-analytic in a way
that will always remain invisible in a perturbation expan-
sion around g2 = 0. Moreover, the several known obstruc-
tions [2] to the existence and uniqueness of a Borel trans-
form of the perturbation series all have to do, at least
qualitatively, with the presence of this scale. There ex-
ists, therefore, the intriguing possibility that accounting
systematically for the Λ dependence of correlation func-
tions may be the minimal step beyond perturbation theory
needed to define a strictly renormalizable theory uniquely.
(Here “Λ dependence” does not, of course, refer to a mere

reparametrization of the perturbation series, as obtained
by solving (1.1) for g in terms of Λ, or equivalently by
leading-logarithms resummation. Genuinely nonperturba-
tive Λ dependence, exemplified by the way vacuum con-
densates occur in operator-product expansions (OPE), is
typically polynomial or inverse-polynomial).

The present paper elaborates on a specific scheme, out-
lined earlier in this journal [3], of accounting systemati-
cally for the Λ dependence, under the restriction (which
in an asymptotically free theory turns out to be a weak
one) that the known standard technique of renormaliza-
tion remain applicable with at most inessential modifica-
tions. This scheme takes the form of an extended iterative
solution to the integral equations for correlation or vertex
functions, starting from a set of extended Feynman rules
for the superficially divergent basic vertices of the theory,
as distinct from the ordinary Feynman rules (bare ver-
tices) Γ (0)pert, whose iteration generates the perturbative
series. These extended vertices are quantities of zeroth or-
der (p = 0) with respect to the perturbative g2 dependence
but contain a “seed dependence” on the nonanalytic scale
(1.1), approximated systematically. Under the combined
requirements of globality (in order to be applicable in loop
integrals, the approximation must in principle be valid
over the entire momentum range) and of the preserva-
tion of power counting (as a basic prerequisite of standard
renormalization technique), the choice of approximating
functions is remarkably unique: they must be functions
rational with respect to Λ and therefore (since Λ is di-
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mensionful) also with respect to momentum variables. For
the representation of the (p = 0) nonperturbative Λ de-
pendence, rational approximants perform the same basic
role that polynomial approximants play for the perturba-
tive g2 dependence. The poles of these rational functions,
together with the numerator zeroes, will in general form
discrete approximations to branch cuts of the vertices in
their complex-momentum planes. We follow [3] in denot-
ing the extended rules by Γ [r,0], with r the (denominator)
degree of rational approximation. At each level r, the Γ [r,0]

approach the Γ (0)pert in the “perturbative limit” Λ → 0;
on the other hand their sequence as r increases may be
viewed as an analytic continuation-through-resummation
of the zeroth-order terms of the OPE.

The central problem of such a method is to demon-
strate dynamical self-consistency of these extended Feyn-
man rules. The integral equations (Dyson-Schwinger, or
DS, equations) for the set Γ of proper vertex functions
ΓN , where N stands summarily for the number and types
of external legs, take the schematic form

ΓN = Γ
(0)pert
N +

( g0

4π

)2

ΦN [Γ (0)pert, Γ ], (1.2)

where g0 is the bare gauge coupling, and ΦN a set of non-
linear dressing functionals, containing loop integrals over
combinations of Γ ’s. With the inhomogeneous terms al-
ways given by the bare Γ (0)pert, iterating instead around a
nonperturbatively modified set of starting functions Γ [r,0]

can work only if the interaction terms ΦN , at each or-
der l of the iteration, not only generate an l-th order,
“quasi-perturbative” power correction in g2(ν), but also
reproduce the nonperturbative parts, Γ [r,0] − Γ (0)pert, of
the new zeroth-order input: as compared to perturbation
theory, the solution must be able to “establish its own ze-
roth order”. To have the functionals ΦN , in spite of their
g2

0 prefactor, produce certain terms of zeroth order in g2 is
not trivial. Moreover, for the method to be practical, the
number of extended Feynman rules should remain finite
(and small), as in perturbation theory, and in view of the
notorious infinite hierarchical coupling in eqs. (1.2) – with
each ΦN coupling to Γ ’s up to ΓN+1 or even ΓN+2 –, this
is again nontrivial.

The mechanism discussed in [3] for simultaneously en-
suring both objectives exploits the structure (1.1) of the
scale Λ in conjunction with the renormalizable divergence
structure of the theory. To briefly describe its main line,
let

{c}[r] = {cr,1, cr,2, . . . cr,kr} (1.3)

be the complete set of kr numerator coefficients of the
level-r rational approximants Γ [r,0]

N for all superficially di-
vergent vertices (of which, we recall, there are seven in
covariantly quantized QCD), and let

{d}[r] = {dr,1, dr,2, . . . dr,mr} (1.4)

be the complete set of mr denominator zeroes (pole posi-
tions) in units of Λ2. Both c’s and d’s are dimensionless,

real numbers. Then

Γ
[r,0]
N = Γ

(0)pert
N +∆

[r]
N

(
{c}[r]N , {d}

[r]
N ;Λ

)
, (1.5)

in a notation suppressing momenta and all other variables
not immediately pertinent to the argument. Here {c}[r]N de-
notes the subset of {c}[r] appearing in the vertex ΓN , etc.
Upon evaluating, say, the first iteration (one-loop order,
l = 1) of (1.2), dimensionally regularized in D = 4 − 2ε,
with the functions (1.5) as input, one obtains after some
algebraic decomposition,

[
g0(ε)νε0

4π

]2

Φ
(l=1)
N,ε [Γ (0)pert, Γ [r,0]]

= Π(ε) ·∆[r]
N

(
{C({c}[r], {d}[r])}[r], {d}[r]N ′ 6=N ;Λ

)
+
[
g0(ε)νε0

4π

]2

·
{
Ξ

(1)
N

(
{c}[r]

)1
ε

+ Γ
[r,1)
N

(
{c}[r], {d}[r];Λ

)
+O(ε)

}
.

(1.6)

Here {C}[r] is a set of nonlinear algebraic expressions in
the input coefficients (1.3/1.4), while {d}[r]N ′ 6=N denotes the
subset of denominator roots (1.4) in the vertices ΓN ′ other
than ΓN to which ΦN provides coupling. The appearance
of the first term on the r.h.s. of (1.6) is nontrivial: it occurs
only if all seven basic vertices are treated by mutually con-
sistent, nonperturbative approximants of the same level r.
This term appears with a prefactor,

Π =
[
g0(ε)
4π

]2 1
ε

(
Λ2
ε

ν2
0

)−ε
, (1.7)

which, by virtue of an exact RG identity, is independent
of the renormalized coupling g(ν), and finite as ε→ 0:

Π(ε) =
1
β0

[1 +O(ε, ε ln ε)] , independent of g2. (1.8)

Here β0 is the leading beta-function coefficient of (1.1).
Note how in this exact result one coupling factor (g2

0)
and one divergence factor

(
1
ε

)
get “eaten” to produce a

coupling-independent and finite quantity.
It therefore becomes possible to reproduce analytically

the nonperturbative part, ∆[r]
N , of the zeroth-order input

(1.5) by imposing the matching or self-consistency condi-
tions,

{d}[r]N ′ 6=N = {d}[r]N (all N), (1.9)

which says that all basic vertices must exhibit one com-
mon set of denominator zeroes (still differing, however, for
different types of external legs, or basic fields), and
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1
β0
C

[r]
i

(
{c}[r], {d}[r]

)
= cr,i (i = 1, . . . kr), (1.10)

which ensures reproduction of numerator structures.
It is crucial that the nonperturbative terms establish

themselves in a finite manner, since in this way one avoids
the introduction of nonlocal counterterms, and thus pre-
serves another basic element of standard renormalization.
It is equally crucial that the above mechanism, as shown
by the last two factors of (1.7), is tied to the loop diver-
gences of the integral equations: this gives the superfi-
cially divergent vertices a privileged position, such that
formation of nonperturbative ∆N ’s remains rigorously re-
stricted to these vertices. In spite of the infinite hierarchi-
cal coupling, the number of extended Feynman rules does
not proliferate, and in fact remains the same as for the
bare vertices.

In what follows, we focus exclusively on this self-
consistency process for the generalized Feynman rules,
and therefore refer the reader to [3] for what needs to
be said about the last term of (1.6) – representing the
p = 1 quasi-perturbative correction – and about the per-
turbative “boundary condition” and essentially standard
renormalization procedure it requires. We only note, for
later use, that the condition of having the remaining diver-
gence exactly equal to the perturbative one would require
Ξ

(1)
N to be of the form

z
(1)
N Γ

(0)pert
N , (1.11)

with z
(1)
N the one-loop coefficient of (g/4π)2/ε in the per-

turbative renormalization constant ZN for the Vertex ΓN
– a condition which may impose extra constraints on {c}[r]
that for low r may be satisfiable only within approxima-
tion errors.

The exploration of this extended-iterative scheme rep-
resents a calculational program of some length. It was
begun in [3] with an illustrative derivation of (1.6) and
of matching conditions (1.10) at r = 1 and l = 1 for
the transverse two-gluon vertex. While calculations of the
ghost and fermion two-point functions follow essentially
the same pattern, those for the higher superficially diver-
gent vertices, with N = 3 and 4, are not straightforward
extensions to more kinematical variables. As a result of the
subtle interplay between the coupled DS equations, they
reveal a whole array of new aspects and intricacies. We
therefore plan to present and discuss the r = 1, l = 1 self-
consistency calculations for these vertices in several parts.
In the present paper, we focus on the remaining superfi-
cially divergent vertices of the gauge, ghost, and massless-
quark sectors up to N = 3: the three-gluon vertex Γ3V ,
ghost vertices ΓGḠ and ΓGV Ḡ, where V and G label vec-
tor (=gluon) and ghost external legs, and fermion vertices
ΓFF̄ and ΓFV F̄ . In the companion paper [4] we will deal
with the four-gluon vertex Γ4V , the highest superficially
divergent vertex, which is particularly complicated both
kinematically and in its DS equation. In these two papers,
consideration of the fermion (quark) functions will be re-
stricted – as were the N = 2V calculations of [3] – to the
case of massless quarks, where the fermionic mass scales,

too, are simply multiples of Λ. For massive fermions, the
presence of “extraneous” RG-invariant mass scales not
having the structure (1.1) causes additional complications
with which we plan to deal separately.

In Sect. 2 of the present article, we recall the DS equa-
tion for the Γ3V vertex. While summarizing known ma-
terial, this section seems necessary to establish notation
and a precise starting point for the subsequent discussion.
In the present program we deal exclusively with the “or-
dinary” DS equations, without additional Bethe-Salpeter
resummations in their interaction terms, in which the dis-
tinguished leftmost external line always runs into a bare
vertex. Section 2.2 focuses on the phenomenon of com-
pensating poles in the 3V equation where they make their
first appearance. While at first sight a merely technical
point, these turn out to be an important structural el-
ement, by which the formalism automatically prevents
the appearance of “wrong” poles on internal lines. A sys-
tematic account of these leads to the rearranged inte-
gral equation of Sect. 2.3, whose terms now exhibit an
extended-irreducibility property. It is the rearranged equa-
tions that form the most convenient framework for the
self-consistency problem of the extended Feynman rules.
Extraction of the matching conditions (1.9-1.11) at the
lowest level of rational approximation of interest for QCD
(r = 1) and at one loop (l = 1) is discussed in Sect. 2.4
for the 3-gluon vertex. Section 3 considers the equations
for the two ghost vertices, and Sect. 4 the equations for
the two fermion vertices in the massless case.

The combined 2-plus-3-point self-consistency system
is discussed in Sect. 5 . A noteworthy result, which will
continue to hold after inclusion of 4-gluon-conditions, is
that the set of denominator coefficients (1.4), while re-
stricted by (1.9), is not fully determined by the divergent
parts of DS loops, and that composite-operator informa-
tion, in the form of equation-of-motion condensate con-
ditions (DS equations at coincident spacetime points) is
required at this point to complement the usual equations.
On the other hand, the system is found to nearly decouple
from the 4-gluon one, so that a solution without 4-gluon
equations is possible with an effective one-parameter free-
dom. The results, when compared to the more restricted
and heuristic attempt of [5] for a pure-gluon theory, will
be seen to represent significant progress, and in particu-
lar to include the existence of a parameter range where
one of the several solutions to the nonlinear system has
all zeroth-order vertices entirely real in the Euclidean, as
required for a physical solution. One result that may be
of interest is that the transverse gluon propagator of ze-
roth order (not including any O(g2) corrections) at zero
momentum is a finite constant of order Λ−2.

As in [3], all calculations are performed for the Eu-
clidean theory, and in Landau gauge. The Landau gauge
provides some welcome reduction of the considerable com-
plexity of loop computation with the extended Feynman
rules: here the two ghost vertices turn out to remain per-
turbative, and calculations can be restricted to amplitudes
with only transverse (if any) gluon legs, which then form
a closed DS problem. This has the obvious disadvantage
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Fig. 1. DS equation for the Γ3V Vertex

that nothing can be inferred as yet about the approxi-
mate saturation or violation of Slavnov-Taylor identities,
which we recall are statements about amplitudes with at
least one longitudinal gluon leg, and which in the low or-
ders of an iterative scheme are not, of course, expected to
be exactly self-consistent. (Differential ST identities, un-
der an additional regularity assumption, do constrain the
transverse-gluon vertices to some extent, and this is dis-
cussed briefly at the end of Sect. 5). However, since the
physical degrees of freedom of the gauge field are in the
transverse sector, one may expect the essential parts of
the nonperturbative structure to develop here (as is ob-
viously true for the 2-gluon function). Also, we do not
yet use the most general color-and-Lorentz-tensor struc-
ture of the 4V vertex, which would lead to calculations
of prohibitive length, but restrict our study to a theoreti-
cally motivated tensor subset capable of dynamical self-
consistency. Nor do we consider the quasi-perturbative
corrections,

(
g

4π

)2
Γ

[1,1)
N in the notation of (1.6). While all

these questions are interesting in themselves, they must
form subjects of future study.

To the extent that the present scheme uses the DS
equations as a framework, its purpose is not to provide
exact numerical solutions of DS equations at low levels of
decoupling; for accounts of the work in this direction the
reader is referred to [6]. Here the aim is to develop an an-
alytic approximation method that provides some insight
into the nonperturbative coupling structure, and in partic-
ular to identify the precise mechanism, connected with the
divergence structure, by which the scale (1.1) establishes
itself in correlation functions. In particular, such a scheme
allows qualitative changes in the elementary propagators
– the appearance of zeroth-order, finite, real or complex
mass shifts – to be followed in a more transparent fashion.

2 The three-gluon vertex equation

2.1 Integral equation and input

The DS equation for the proper three-vector vertex g0Γ3V

in Euclidean momentum space is written diagrammati-
cally in Fig. 1. The form shown is a compact but hybrid
one: most terms on the r.h.s. have not been resolved down
to the level of proper vertices, but feature connected and
amputated functions T ′ which are one-particle irreducible
(1PI) only in the horizontal channel of the diagram, while
otherwise still containing reducible (1PR) terms. Thus in
term (A)3 of Fig. 1, the four-gluon T matrix T ′4V for the
horizontal channel is to be decomposed further as in Fig. 2:

T ′4V = T4V −A1 (2.1)
T4V = A1 +A2 +A3 + Γ4V . (2.2)

Here Γ4V is the proper, fully 1PI, four-gluon vertex,
while A1 and A2, A3 are dressed one-gluon reducible
terms in the horizontal channel and the two crossed
channels, respectively. Analogous relations apply to the
ghost-antighost-gluon-gluon and quark-antiquark-gluon-
gluon T ′ matrices, T ′

GḠV V
and T ′

FF̄V V
, of terms (B)3 and

(E)3 respectively.
The “standard” form of the Γ3V equation in Fig. 1

displays the characteristic asymmetry, common to all DS
equations, of having the leftmost external leg always end-
ing in a bare vertex, while the other legs run into dressed
vertices. This structure is at the core of a problem plagu-
ing all treatments (and not just the present approxima-
tion method) of vertices with N ≥ 3: while the exact so-
lution of the equation may be known to have a certain
Bose or Fermi symmetry, the equation does not display
this symmetry manifestly, and approximate solutions to
it therefore usually fail to exhibit the full desired symme-
try. Enforcing the symmetry by imposing extra conditions
on the vertex coefficients leads to overdetermination in the
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Fig. 2. Decomposition of the four-gluon T -matrix

self-consistency equations. In the framework of an itera-
tive solution, “trivial” symmetrizations may of course be
used to cure this problem, but the unsymmetrized forms
remain of interest as indicators of the overall error at the
level of approximation considered.

Since we will be working throughout at the one-loop
(l = 1) level, characterized by a single D-dimensional mo-
mentum integration in the dressing functional Φ3V , the
term (D)3 of Fig. 1 with two DS loops does not yet con-
tribute (its contribution to the l.h.s. of (1.10) will be of
order (1/β0)2).

The input for the self-consistency calculation must con-
sist of the Euclidean extended Feynman rules Γ [r,0]

N , at the
same level r of rational approximation, for all seven su-
perficially divergent vertices. With the exception of Γ [r,0]

4V ,
whose r = 1 form will be detailed in [4], these have been
listed in [3]. Here we need to recall only two elements
carrying special restrictions. First, the gluon-propagator
rule, D[r,0] = −

(
Γ

[r,0]
2V

)−1, will be simplified throughout
by adopting the Landau (ξ = 0) gauge fixing. Then(

D[r,0](k)
)µν
ab

= δabt
µν(k)D[r,0]

T (k2), (2.3)

tµν(k) = δµν − kµkν

k2
, (2.4)

where, at the r = 1 level,

D
[1,0]
T (k2) =

[
k2 + u1,1Λ

2 +
u1,3Λ

4

k2 + u1,2Λ2

]−1

(2.5)

=
k2 + u1,2Λ

2

(k2 + σ1,1Λ2)(k2 + σ1,3Λ2)
. (2.6)

Second, the general color structure of the Γ3V vertex
itself, whose self-reproduction we examine in this section,

(Γ3V )abc = ifabcΓ(f) + dabcΓ(d), (2.7)

will be simplified from the outset to a pure fabc structure,
i.e. one puts

Γ(d) ≈ 0 (2.8)

and omits the f on Γ(f). The reason is that in the much
more complicated color structure of Γ4V discussed in [4],
we will disregard those color-basis tensors that would feed
the dabc portion through the (A)3 term of Fig. 1. It is
conceivable that some dabc structure could be made to
self-reproduce through the other one-loop terms of Fig. 1
alone, but since we view the seven basic DS equations as
an interrelated whole, it does not seem consistent to us to
keep one source of such terms and neglect the other. The
tensor structure then is(
Γ3V (p1, p2, p3)

)ρκσ
abc

= ifabc

{
δκσ(p2 − p3)ρF0(p2

2, p
2
3; p2

1)

+ δσρ(p3 − p1)κF0(p2
3, p

2
1; p2

2)
+ δρκ(p1 − p2)σF0(p2

1, p
2
2; p2

3)
+ (p2 − p3)ρ(p3 − p1)κ(p1 − p2)σF1(p2

1, p
2
2, p

2
3)

+
[

10 terms not contributing

to totally transverse vertex
]}
. (2.9)

The terms in the last line do not enter the purely trans-
verse DS system based on Landau gauge fixing that we
use. Since almost all of the invariant-function relations
following from the three-gluon Slavnov-Taylor identity in-
volve at least one of the four additional invariant functions
from these terms, they cannot be tested in the present cal-
culation, which is natural since our system has no longi-
tudinal gluons. The one exception is a relation following,
under an additional regularity assumption on ∂Γ3V /∂pi
at pi → 0, from the differential ST identity, and which
involves only the F0 function,

F0(q2, q2; 0) =
d

dq2
D−1
T (q2) , (2.10)

provided the ghost vertices remain perturbative. Our pro-
cedure generally will be not to impose such relations from
the outset, as one does in calculations with fixed model
vertices, but to let the self-consistency calculation run its
course and check later for their fulfillment or violation.

At level r = 1 (and only at r = 1), the invariant func-
tions F [1,0]

0 and F
[1,0]
1 are conveniently written in a form
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fully decomposed into partial fractions,

F
[1,0]
0 (p2

1, p
2
2; p2

3) = 1 + x1,1

(
Π1 +Π2

)
+
(
x1,2 +

x′1,2
Π3

)
Π1Π2 + x1,3Π3

+
[(
x1,4 +

x′1,4
Π2

)
Π1 +

(
x1,4 +

x′1,4
Π1

)
Π2

]
Π3

+x1,5Π1Π2Π3, (2.11)

F
[1,0]
1 (p2

1, p
2
2, p

2
3) =

1
Λ2

[
x1,6

(
Π1Π2 +Π2Π3 +Π3Π1

)
+x1,7Π1Π2Π3

]
(2.12)

featuring the building blocks

Πi =
Λ2

p2
i + u′1,2Λ

2
(i = 1, 2, 3). (2.13)

Here we anticipate that the DS self-consistency conditions
(1.9) will enforce u′1,2 = u1,2, i.e., a common denominator
factor in all gluonic vertices. The factorized (with respect
to the 3 variables p2

i ) denominator structure of these ap-
proximants may be viewed as arising from a triple-spectral
representation,

F0,1 =
1
π3

∫
dz1dz2dz3

ρ0,1(z1, z2, z3, p
2
1, p

2
2, p

2
3)

(z1 − p2
1)(z2 − p2

2)(z3 − p2
3)
, (2.14)

(where the spectral functions are still allowed some poly-
nomial p2

i dependence) by a discrete approximation. At
r = 1, it exhibits a single denominator zero, p2

i = −u1,2Λ
2,

in all three variables.
Although the approximation of branch-cut structures

by poles is an old technique, a casual look might still sug-
gest a danger here that these poles in vertices could some-
how take on a life of their own and roam the formalism as
unphysical particles. This does not happen, for two rea-
sons. First, DS self-consistency will transfer these poles
down to the two-point vertices (negative-inverse propa-
gators), so that the propagators themselves will develop
zeroes at these pole positions, as seen in (2.6). The unam-
putated, connected Green functions, which are the quan-
tities having physical interpretation as propagation am-
plitudes, will therefore be nonsingular at these positions
in the squared momenta of their external lines, and no S-
matrix elements for unphysical particles of masses u1,2Λ

2

will arise, as emphasized already in [3]. Second, and per-
haps more remarkably, the formalism will also automat-
ically cancel the poles of type (2.13) when they arise on
certain internal lines, so that there will be no Cutkosky
discontinuities corresponding to production of such ob-
jects. To demonstrate this in the simplest context will be
the subject of the next subsection.

2.2 “Compensating” poles in Γ4V

The phenomenon of automatic cancellation of superflu-
ous poles on internal lines seems to have been noted first

by Jackiw and Johnson and by Cornwall and Norton [7]
in 1973. While there are obvious technical differences be-
tween their (Abelian) models and the present QCD study
(in particular, their poles arise in longitudinal-vector chan-
nels, whereas here they appear in the transverse-gluon sec-
tor), this mechanism is very much the same in both cases.

Consider the Γ3V equation of Fig. 1 in order [r, 0], and
compare residues of both sides at the poles in the variable
p2

2 of the leftmost leg. In a partial-fraction decomposition
with respect to p2

2, the l.h.s. can be written

Γ
[r,0]
3V =

∑r
n=1B

[r]
n (p3, p1) Λ2

p2
2+ur,2nΛ2 + B

[r]
0 (p3, p1)

+ [ terms with (p2
2)1, (p2

2)2, . . . (p2
2)r ]. (2.15)

The compact notation suppresses all tensor structure. All
terms displayed still have rational structure in p2

3, p2
1. The

terms in the second line are allowed [3] as long as only the
conditions of overall asymptotic freedom and preservation
of perturbative power counting are imposed, but will in
fact turn out to be more strongly restricted. The residue
at p2

2 = −ur,2nΛ2 for the l.h.s. is then Λ2Bn (n = 1, . . . r).
For the r.h.s., to keep the argument as simple as possi-

ble, we invoke for the moment all simplifications available
for our specific calculation according to subsect. 2.1, i.e.
we disregard terms (D)3, (E)3, and (B)3 (the general case
will be outlined in subsect. 2.3). Then zeroth-order de-
nominator structure in p2

2 can come only from the T ′[r,0]
4V

amplitude of term (A)3, for which p2
2 = (p3 + p1)2 = sE

is the (Euclidean) Mandelstam variable in the horizontal
channel. According to general structure theorems on cor-
relation functions [8], residues at poles in such a variable
must factorize with respect to the two sides of the chan-
nel, or be at most sums of factorizing terms. Thus if q1, q3

are the momenta of the loop gluons of term (A)3, the T ′4V
amplitude in the vicinity of sE = −ur,2nΛ2 must behave
as

T ′
[r,0]
4V =

ΨTn (q1, q3)Ψn(p3, p1)
sE + ur,2nΛ2

+ [ regular terms ]. (2.16)

The partial Bose symmetry of T ′4V implies that both
residue factors must be given by the same function or
column vector of functions, Ψn. Note that (2.16) in no
way contradicts the 1PI property of T ′4V in the horizontal
channel: the pole factor is not a propagator of any of the
elementary fields of the theory, so the term is technically
allowed to appear (as would, e.g., a bound-state pole) not
only in T ′4V but in fact in the fully 1PI piece, Γ4V , of
(2.2). However, the observation does suggest a natural en-
largement of the notion of reducibility, as will be discussed
below.

The residue comparison shows that Ψn must be pro-
portional to Bn,

Ψn(p3, p1) = MnBn(p3, p1), (2.17)

with Mn some matrix, and that (again in compact nota-
tion){
g2

0

1
2

∫
Γ

(0)pert
3V DDBn

}
p2

2=−ur,2nΛ2
·MT

nMnBn = Λ2Bn.

(2.18)
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But here the brackets on the l.h.s. are already fixed from
a lower stage of the DS problem: the self-reproduction
conditions for the poles of the gluon self-energy ∆2V (p2).
Those enforce, under the simplifications adopted,{
g2

0

1
2

∫
Γ

(0)pert
3V DDBn

}
p2

2=−ur,2nΛ2
= −ur,2n+1Λ

2t(p2),

(2.19)

t being the transverse projector of (2.4), and ur,2n+1 the
dimensionless residue parameter in Γ

[r,0]
2V exemplified, for

r = 1, by the u1,3 of (2.5). We conclude that, first,

B[r]
n (p3, p1) = t(p3 + p1)B[r]

n (p3, p1) (n = 1, . . . r),
(2.20)

an information more detailed than that of the all-
transverse projection (2.9): nonperturbative denominator
structure develops only in the variables of transverse gluon
legs. Second,

MT
nMn = − 1

ur,2n+1
. (2.21)

What has been learned is that as a consequence of the
lower (two-point and three-point) equations alone, T ′[r,0]

4V

and Γ
[r,0]
4V must contain a term of the form

−
(
C

[r]
1

)
2V,2V

= −
r∑

n=1

B[r]
n

(ur,2n+1)−1t(P )
P 2 + ur,2nΛ2

B[r]
n (2.22)

in the total momentum P , with P 2 = sE , of its horizon-
tal channel. But Γ4V is fully Bose symmetric, and there-
fore must contain analogous terms also for the two crossed
channels, with Mandelstam variables uE and tE , which we
denote by C2 and C3. Thus,

Γ
[r,0]
4V = −

(
C

[r]
1

)
2V,2V

−
(
C

[r]
2

)
2V,2V

−
(
C

[r]
3

)
2V,2V

+ V
[r,0]
4V , (2.23)

and the derivation shows that the V [r,0]
4V defined by this

relation contains no more zeroth-order denominator struc-
ture in sE , uE , or tE . The latter conclusion, strictly speak-
ing, follows only for the adjoint color representation in
each two-body channel, since in Fig. 1 the leftmost gluon
line projects T ′4V onto this color subspace. It requires ad-
ditional considerations, based on the Bethe-Salpeter nor-
malization conditions, to check for possible zeroth-order,
Mandelstam-variable poles in the other colored channels.
Since these considerations logically belong to the discus-
sion of the four-gluon amplitude, we defer them to the
companion article [4]. Here we anticipate the result: In ze-
roth perturbative order, there are no Mandelstam-variable
poles in the other color sectors. Thus the “reduced” vertex
function V

[r,0]
4V has nonperturbative structure, rationally

approximated, only in the variables p2
1, . . . p

2
4 of individual

external legs. We emphasize that this in no way precludes
the existence of glueball-type bound states in color-singlet

channels. Such bound states are not elements of the gener-
alized Feynman rule Γ [r,0]

4V at any level r, but arise through
the standard mechanism of partial (e.g., ladder) resumma-
tion of quasi-perturbative corrections (g/4π)2pΓ

[r,p)
4V to all

orders p ≥ 1.
The poles of (2.16) cannot represent bound states,

since in general their residues are not positive definite (at
r = 1, for example, u1,3 will be found to be positive). Thus
for the moment they would seem to be unphysical arte-
facts. But one immediately realizes that in fact they play
a legitimate role by cancelling another unphysical phe-
nomenon. Inspect the analytic structure of the one-gluon-
reducible terms Ai at level [r, 0] (i.e., with [r, 0] diagram
elements). Again suppressing all unnecessary arguments,
one has

A
[r,0]
1 = Γ

[r,0]
3V D[r,0](P ) Γ [r,0]

3V . (2.24)

By the construction prescriptions for the extended Feyn-
man rules, the gluon propagator D[r,0] contains, besides
its r + 1 poles, a product of r numerator zeroes of the
form

r∏
n=1

(P 2 + ur,2nΛ
2). (2.25)

On the other hand, both Γ
[r,0]
3V vertices contain the same

product in their denominators, so that there remain on
the internal gluon line, in addition to the legitimate poles
from D describing propagation of the exchanged object, a
number r of extra poles at positions P 2 = −ur,2nΛ2. Such
extra poles are unacceptable physically; they would imply
that the generalized Feynman rule for D is incomplete.
Now isolate the n-th unphysical-pole piece of A1. From
(2.15) and (2.19), it must involve Bnt(P )Bn; by comput-
ing the residue, the piece is found to be

B[r]
n

(ur,2n+1)−1t(P )
P 2 + ur,2nΛ2

B[r]
n , (2.26)

so that the sum of the unphysical pieces is the negative of
(2.22):

r∑
n=1

( n-th unphysical pole of A[r,0]
1 ) =

(
C

[r]
1

)
2V,2V

. (2.27)

Upon combining (2.2) and (2.23) into

T
[r,0]
4V = A′

[r,0]
1 +A′

[r,0]
2 +A′

[r,0]
3 + V

[r,0]
4V , (2.28)

the unphysical artefacts then cancel exactly to leave the
“softened” exchange graphs

A′
[r,0]
i = A

[r,0]
i −

(
C

[r]
i

)
2V,2V

(i = 1, 2, 3). (2.29)

The Γ
[r,0]
4V poles inferred through the 2V and 3V equa-

tions therefore turn out to be “compensating poles”, can-
celling unphysical parts in the one-gluon-reducible terms
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Fig. 3. “Softened” exchange diagram (a) and dia-
grammatic representation of the compensating pole
(b)

of T4V . It is clear that in the context of the extended it-
erative scheme it is the artefact-free A′i, rather than the
original Ai, that represent the physical one-gluon exchange
mechanism, and the artefact-free V [r,0]

4V , rather than Γ [r,0]
4V ,

that constitutes the physical extended Feynman rule for
four-gluon interaction. On the other hand, in the quantity
(2.1),

T ′
[r,0]
4V = A′

[r,0]
2 +A′

[r,0]
3 + V

[r,0]
4V −

(
C

[r]
1

)
2V,2V

, (2.30)

an uncompensated C1 remains, enabling, as we have seen,
the (A)3 term of Fig. 1 to produce the Bn terms of (2.15).

2.3 Extended irreducibility. Rearranged vertex equation

In the general case where terms (B)3, (E)3, and (for l ≥ 2
loops) (D)3 contribute, one first generalizes (2.16) to the
conclusion that the T matrices T ′

GḠV V
, T ′

FF̄V V
, T ′5V in

general have poles (forming discrete approximations of
cuts) at the same positions, p2

2 = −ur,2nΛ2, in their hor-
izontal channels. One then invokes another general prop-
erty of correlation functions [8]: when a pole is present
in several functions simultaneously, each residue factor is
uniquely associated with its own subset of external lines,
and independent of the remaining legs in the various func-
tions. Thus at the pole p2

2 = −ur,2nΛ2, the residue factor
for the rightmost two-gluon configuration in Fig. 1 is the
same Ψn as in (2.16) for all T ′ amplitudes. Then (2.17) still
follows, but (2.18) now has four different contributions on
its l.h.s., corresponding to various dressing mechanisms for
the gluon self-energy. Self-reproduction of the Bn terms
with n ≥ 1 in (2.15) is possible if Mn and the various ma-
trices taking the place of the MT

n in (2.18) are all the same
multiple of t(p2). Then the full two-gluon self-consistency
conditions [3] can be invoked, which generalize (2.19), and
the Bn term reproduces itself if (2.21) is imposed.

As a by-product, one finds that the 1PI functions
ΓGḠV V , ΓFF̄V V must contain terms of the form

−
(
C

[r]
1

)
GḠ,V V

= −
∑r
n=1 B̃

[r]
n

(ur,2n+1)−1t(P )
P 2+ur,2nΛ2 B

[r]
n , (2.31)

−
(
C

[r]
1

)
FF̄ ,V V

= −
∑r
n=1 B̄

[r]
F,n

(ur,2n+1)−1t(P )
P 2+ur,2nΛ2 B

[r]
n , (2.32)

in their two-body channels (G + Ḡ ↔ V + V ) and (F +
F̄ ↔ V + V ) respectively, where B̃n, B̄F,n are the ampli-
tudes analogous to the Bn of (2.15) in the partial-fraction
decompositions of the ghost vertex Γ

[r,0]

GV Ḡ
(−q′, k, q) and

fermion vertices Γ
[r,0]

FV F̄
(−p′, k, p) with respect to their

gluon-leg variable, k2. The analogous but richer structure
in T ′5V will be discussed in detail in [4].

The structure revealed by these residue-taking oper-
ations may look involved at first, but the final result is
simple: the full 4-gluon, off-shell T matrix (2.2), for ex-
ample, has no unphysical artefacts at all. The artefacts
arose because, in a nonperturbative context, the usual de-
composition of T by the criterion of ordinary one-particle
(here, one-gluon) reducibility turns out to be an awkward
one: both parts in such a division contain unphysical-pole
terms that cancel in the sum. It is clearly more natural,
and better suited to the physics of the problem, to perform
the decomposition as in (2.28), where all parts are free of
artefacts. To characterize such a decomposition more for-
mally, we call the set of r pole factors common to expres-
sions (2.22) and (2.31/2.32) a gluonic shadow, described
graphically by the double wiggly line of Fig. 3, and define
as one-shadow-irreducible any amplitude built from [r, 0]
extended Feynman rules that does not fall into two discon-
nected pieces upon cutting such a shadow line. The defin-
ing property of decomposition (2.28) then is that all its
terms are one-shadow irreducible. In particular, V [r,0]

4V ex-
hibits what one may call extended irreducibility, being ir-
reducible both for gluon-propagator poles and for shadow
poles, while the “softened” exchange diagrams A′[r,0]

i , de-
scribed graphically by using dotted diagram elements as
in Fig. 3, are still reducible for the gluon-propagator poles.

Use of (2.30) and of the analogous decompositions

T ′
[r,0]

GḠV V
= Ã

′[r,0]
2 + Ã

′[r,0]
3 + V

[r,0]

GḠV V
− (C [r]

1 )GḠ,V V , (2.33)

T ′
[r,0]

FF̄V V
= Ā

′[r,0]
F,2 + Ā

′[r,0]
F,3 + V

[r,0]

FF̄V V
− (C [r]

1 )FF̄ ,V V , (2.34)

where Ã′i and Ā′F,i have obvious meanings as softened ex-
change diagrams reducible for ghost or fermion propagator
poles but with ghost-shadow (in non-Landau gauges only)
or quark-shadow poles compensated, now leads to the re-
arranged vertex equation of Fig. 4. With the pole terms
of (2.15) having been reproduced on the r.h.s. through
condition (2.21) on the four-gluon function, and with the
second line of (2.15) anticipated to be absent by restric-
tion (2.38) below, only an equation for the amplitude B[r]

0
– an object with three-gluon tensor structure but only
two scalar variables – remains. This rather strong reduc-
tion of the original equation, due to the “all-in-one-blow”
self-reproduction of the Bn parts with n ≥ 1 through the
presence of the compensating poles, generally causes a loss
of self-consistency conditions and therefore underdetermi-
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Fig. 4. DS equation for the B0 part of the Γ3V -Vertex

nation, which tends to counteract the overdetermination
coming from the lack of manifest symmetry. (At r = 1,
for example, the x1,5 coefficient of (2.11) appears only in
B

[1]
1 and not in B[1]

0 , and therefore gets no self-consistency
condition of its own).

In Fig. 4, we now obtain the dot modifications, sig-
naling absence of unphysical artefacts, in the triangle di-
agrams (A)3′ , (E,E′)3′ , and (F, F ′)3′ . In the remainder,
only the terms that can contribute to the self-reproduction
of the extended Feynman rule (i.e., produce terms of ze-
roth perturbative order) at one loop have been made ex-
plicit. Thus diagrams containing VGḠV V or VFF̄V V no
more appear: for these amplitudes, which are superfi-
cially convergent, it is now true that after extraction
of the shadow-pole terms they consist only of superfi-
cially convergent loops. Therefore they cannot develop
zeroth-order terms through the divergence-related self-
consistency mechanism, but remain at least of order g2:

VGḠV V = O(g2); VFF̄V V = O(g2). (2.35)

For their contributions to the 3-gluon DS equation, the
argument of [3] goes through : their insertion into terms
(B)3 and (E)3 of Fig. 1 produces integrals for which the

number of 1
ε (Λ2

ε/ν
2
0)−ε factors lags behind the number of

g2
0 prefactors by at least one, and which therefore give only

quasi-perturbative corrections of order p ≥ 1. Note that
this would not have been true for the corresponding Γ am-
plitudes before extraction of the nonperturbative shadow
pieces.

We see here that the argument of [3] concerning these
higher amplitudes needs a subtle qualification: that ar-
gument did not take into account the possibility of cer-
tain treelike structures, of zeroth perturbative order, which
nevertheless appear in the 1PI functions. The shadow-pole
terms are precisely such structures. As is clear already
from (2.33) and (2.34), they will appear in all higher, su-
perficially convergent vertex functions, and are expected
to follow a pattern of one shadow term arising for each
one-particle reducible term of the corresponding T -matrix
amplitude to provide compensation of its unphysical poles.
We will prove this in detail in [4] for the representative
case of the lowest superficially convergent amplitude in
the gluon sector, the five-gluon amplitude, which already
features a large and varied assortment of 1PR terms. Here
we reemphasize that presence of these shadow terms does
not imply a proliferation of Feynman rules, since they con-
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sist entirely of building blocks determined already at the
level of the basic vertices. As in V4V , their role in the
end is to establish that in the nonperturbative context,
partitioning of T matrices should be performed accord-
ing to an extended irreducibility criterion if the parts are
to represent physical mechanisms not contaminated by
unphysical-pole terms. For the V amplitude defined by
such a decomposition, it is then generally true that

V
[r,0]
N = 0 (all r), if ΓN superficially convergent, (2.36)

with eqs. (2.35) as special cases. The superficially diver-
gent V4V occupies a special position in that it is the only V
amplitude with nonvanishing zeroth-order terms, approx-
imated by the sequence V [r,0]

4V . (The three-point vertices,
having no 1PR terms, need no distinction between Γ3 and
V3).

For the self-consistency problem, the rearrangement
for shadow irreducibility brings both simplifications and
complications. On the one hand we now obtain tighter
restrictions than before on the structure of vertex approx-
imants. Numerator polynomials of approximants to, e.g.,
the invariant function F0 of the three-gluon vertex (2.9)
are of the general form∑
λ,m1,m2,m3≥0

C
[r]
λm1 m2 m3

(p2
1)m1 (p2

2)m2 (p2
3)m3 (Λ2)λ ,

(2.37)

and asymptotic freedom, which governs the situation
where all three momenta are scaled uniformly, gives only
the restriction m1 + m2 + m3 = 3r − λ ≤ 3r. Considera-
tion of situations where the vertex (2.9) sits at the outer
edge of an 1PI diagram, so that only two of its momenta
are running in loops while the third is external and fixed,
sharpens this to mi+mj ≤ 2r for all pairs i 6= j if pertur-
bative degrees of loop divergence are to be preserved [3].
Now, more restrictions arise from the fact that in the de-
composition (2.23) we are forced to require the C [r]

i terms
and the V

[r,0]
4V term separately to maintain perturbative

degrees of divergence. Briefly, this conclusion follows from
the fact that the Γ [r,0]

4V on the l.h.s. does preserve the per-
turbative degrees by construction, and does so in two dif-
ferent “outer-edge” situations, with (i) one of the four legs
being external and (ii) two legs being external. In both
situations the B[r]

n factors present in the C [r]
i by (2.22),

when restricted only by mi +mj ≤ 2r, cause higher-than-
perturbative degrees of divergence which in fact have the
pathological property of increasing with r. One verifies
by inspection that due to the different structure of both
contributions, admitting terms in V [r,0]

4V to compensate for
those divergences in the first situation fails to cancel them
in the second situation, and vice versa. The only way of
making (2.23) consistent is therefore to exclude the “dan-
gerous” momentum powers in each Ci. This forbids terms
with net positive powers of p2

3 or p2
1 in the B[r]

n factors,
or equivalently, removes the terms in the second line of
the partial-fraction decomposition (2.15). In the numera-

tor polynomial for F0 we therefore have the stronger re-
strictions

m1 ≤ r, m2 ≤ r, m3 ≤ r. (2.38)

Such terms are also the only natural ones from the point of
view of the spectral representation (2.14); they correspond
to restricting the extra polynomial p2

i dependence of the
spectral functions in (2.14) to at most a bilinear one. At
r = 1, in particular, this restriction forces the primed
coefficients of (2.11) to zero:

x′1,2 = 0 ; x′1,4 = 0. (2.39)

With Γ3V ’s thus simplified, the gluon-exchange graphs Ai
like (2.24), and therefore the “softened” exchange graphs
(2.29), now contain only terms decreasing like Q−2 in the
momentum Q of their exchanged gluon. Therefore they
can now be obtained simply by enumerating and adding
the physical gluon-propagator poles with their residues: in
Landau gauge fixing,

A′
[r,0]
1 (k1, . . . k4) =
r∑

m=0

[
Γ3V (k1, k2, P )

]
P 2=−σr,2m+1Λ2

ρmt(P )
P 2 + σr,2m+1Λ2

×
[
Γ3V (P, k3, k4)

]
P 2=−σr,2m+1Λ2 , (2.40)

where

ρm =
[
(P 2 + σr,2m+1Λ

2)DT (P )
]
P 2=−σr,2m+1Λ2

=

r∏
n=1

(ur,2n − σr,2m+1)

r∏
n=0

(n6=m)

(σr,2n+1 − σr,2m+1)
, (2.41)

and where P = k1 + k2 = −(k3 + k4). In non-Landau
gauges, of course, the longitudinal-gluon propagator term
of the original A1 must be added unchanged.

On the other hand the rearrangement leads to the re-
sult (which is true generally but was not yet visible in the
simpler case of the two-point equation at one loop treated
in [3]) that the perturbative limit as Λ → 0 cannot, at
low levels r, be maintained exactly in all amplitudes, but
only asymptotically for increasing r. For Λ→ 0, the V [r,0]

4V

of (2.23), as well as the A[r,0]
i of (2.29), go over into their

zeroth-order perturbative counterparts, but the C
[r]
i for

low r do not go to zero:[(
C

[r]
1

)
2V,2V

]
Λ=0

=
1
P 2

{ r∑
n=1

B[r]
n (Λ = 0)

t(P )
ur,2n+1

B[r]
n (Λ = 0)

}
. (2.42)

Thus diagrams involving the one-gluon-exchange mecha-
nisms A′i, Ã

′
i, Ā

′
F,i, such as the triangle diagrams of Fig. 4,

are expected not to exhibit a fully correct perturbative
limit as Λ → 0 at low levels r. The condition (or rather



L. Driesen et al.: Extended iterative scheme for QCD: three-point vertices 391

conditions, because there are several tensor structures in-
volved) for the curly bracket in (2.42) to vanish, of which
we will present examples, can at best be fulfilled asymp-
totically for large r, where they spread their restrictive
effect over an increasing number of nonperturbative ver-
tex coefficients, and thus become progressively easier to
maintain.

2.4 3-gluon, r = 1 self-consistency conditions

To extract the self-reproduction conditions of the ex-
tended Feynman rule Γ

[1,0]
3T one evaluates, with eqs.

(1.7/1.8) in mind, the divergent parts of the terms on
the r.h.s. of Fig. 4 in dimensional regularization and Lan-
dau gauge fixing, with [1, 0] diagram elements throughout.
The restriction to divergent parts makes these calcula-
tions somewhat analogous to the computation of one-loop
renormalization constants in perturbation theory (and
much more feasible than full evaluations of [1, 1) radiative
corrections, which already at r = 1 are very lengthy). For
the input V [1,0]

4T to diagram (C)3′ , we anticipate formulas
from appendix B of the companion article [4]: this approx-
imant represents a theoretically motivated restriction to
a subset of fifteen of the many possible color and Lorentz
tensor structures of a four-gluon amplitude, with invari-
ant functions characterized by a set ζ = {ζ1, . . . ζ17} of
seventeen dimensionless, real numerator coefficients. The
terms proportional to the number NF of quark flavors,
arising from fermion-loop diagrams (F )3′ and (F ′)3′ , are
valid for massless quarks (m̂F = 0 in the notation of the
appendix of [3]), where all fermionic mass scales, too, are
simply multiples of Λ. For brevity, we abstain from list-
ing contributions of the various diagrams separately [9]
and present only the combined results. Eqs. (1.10) for the
coefficients x1,i (now written xi for brevity) of the F [1,0]

0
invariant functions (2.11) are:

1
β0

[
− 9

4
x1 +

15
16
x3 +

1
u3

(1
4
x1x2 − 9x1x4 + x3x4

)
+

2
3
NF

(
z3 +

1
u3
x4z3 −

1
w3
z1z4

)]
= x1 (2.43)

1
β0

[3
2
x2

3 +
1
u3

(1
2
x2x4 − 2x2

4 −
15
2
x1x5 +

5
4
x3x5

)
+

2
3
NF

(
z2

3 +
1
u3
x5z3 −

1
w3
z2

4

)]
= x2 (2.44)

1
β0

[3
2
x3 +

1
u3

(
− 37

4
x1x4 +

3
2
x3x4

)
− Z1(ζ)

+
2
3
NF

(
z3 +

1
u3
x4z3 −

1
w3
z1z4

)]
= x3

(2.45)

1
β0

[
−9

4
x1+

15
16
x3+

1
u3

(
−31

4
x1x2−

5
4
x1x4+

5
4
x2x3

)
−Z1(ζ)

+
2
3
NF

(
z3 +

1
u3
x2z3 −

1
w3
z1z4

)]
= x1

(2.46)

1
β0

[3
2
x2

3+
1
u3

(
− 1

4
x2x4−

5
4
x2

4−
15
2
x1x5+

5
4
x3x5

)
−Z2(ζ)

+
2
3
NF

(
z2

3 +
1
u3
x5z3 −

1
w3
z2

4

)]
= x4 (2.47)

(The fermionic vertex coefficients zi are defined by (4.6)
below.)

On the other hand, the terms of the invariant function
F1 of (2.12) turn out to be fed only by themselves, and by
terms in V4V which our above-mentioned, restricted form
of that amplitude omits in the first place. Again, since
we view the basic vertices as an interrelated whole, it did
not seem consistent to us to keep just one source of such
terms. Thus

x6 = 0 ; x7 = 0 (2.48)

is a consistent and self-consistent choice in our framework.
A noteworthy feature is that the coupling to the 4-

gluon amplitude enters only into the three equations (2.45-
2.47), and only through two linear combinations of its sev-
enteen coefficients ζ,

Z1(ζ) = 15
32 ( 3ζ1 − ζ7 ), (2.49)

Z2(ζ) = 15
32 ( 3ζ2 + 3ζ3 − ζ8 − ζ9 ) . (2.50)

The observation that the rather large (and, as it will turn
out, strongly overdetermined) self-consistency problem of
the four-point vertex parameters couples to the 2-point
and 3-point problems only through this narrow “bottle-
neck” will be important as it will suggest ways of breaking
down the rather voluminous total self-consistency problem
into more manageable pieces.

As already noted, there is no equation with x5 on its
r.h.s. But B[1]

0 still has three-gluon tensor structure, and
x1, by (2.9), appears twice in conjunction with two differ-
ent tensor structures, so there are two equations, (2.43)
and (2.46), for x1. The relation obtained by subtracting
these,

1
u3

(
8x1x2 −

31
4
x1x4 + x3x4 −

5
4
x2x3

)
+Z1(ζ)− 2

3
NF

(x2 − x4

u3

)
z3 = 0, (2.51)

represents the imposition, in zeroth perturbative order,
of Bose symmetry on a DS equation that is not mani-
festly Bose symmetric. It appears to be fortuitous that
the “loss” of one equation, incurred in the reduction of the
self-consistency problem to the partial amplitude B[1]

0 , is
just compensated by one Bose-symmetry restriction; we
are not aware of a deeper reason for this phenomenon.
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Fig. 5. DS equation for the ghost-gluon 3-point ver-
tex in the ghost channel

Finally we note the result for the coefficient of the
perturbative-remainder divergence, the Ξ(1)

N of (1.6):(
Ξ

(1)
3T

)ρκσ
=

δκσ(p2 − p3)ρ
[
− 17

4
+

1
u3

(
− 37

4
x2

1 +
3
2
x1x3

)
+

2
3
NF

(
1 +

1
u3
x1z3 −

1
w3
z2

1

)]
+ δσρ(p3 − p1)κ

[
− 17

4
+

1
u3

(
− x2

1 − 8x1x3 +
5
4
x2

3

)
+

2
3
NF

(
1 +

1
u3
x3z3 −

1
w3
z2

1

)]
+ δρκ(p1 − p2)σ

[
− 17

4
+

1
u3

(
− 37

4
x2

1 +
3
2
x1x3

)
+

2
3
NF

(
1 +

1
u3
x1z3 −

1
w3
z2

1

)]
(2.52)

The purely perturbative result would be of the form (1.11)
with the Landau-gauge value

z
(1)
3V (ξ = 0) = −17

4
+

2
3
NF . (2.53)

The existence of deviations from the perturbative limit
does not come as a surprise in view of what we noted be-
fore in connection with (2.42). Eliminating them would
again produce overdetermination of the x coefficients and
generally is not feasible exactly for low r but only asymp-
totically for large r. However the fact that they also cause
deviations from the full Bose symmetry of the 1-loop di-
vergence (more precisely, they leave only the partial sym-
metry exemplified by diagram (A)3′ of Fig. 4) is again
tied to the lack of manifest Bose symmetry in N ≥ 3
DS equations, and is not specific to the present method
but will plague all truly nonperturbative approximations.
To actually perform renormalization, or to compute finite
quasi-radiative corrections, one will therefore work with a
trivially symmetrized DS equation in order to be able to

use normal, symmetric counterterms. (This problem will
be mitigated, though not completely removed, by the use
of a BS-resummed vertex equation where e.g. the (A)3′

graph of Fig. 4 is replaced by a manifestly Bose-symmetric
object, though the replacement for the (C)3′ term still re-
tains an asymmetry).

3 Equations for the ghost vertices

For the ghost-gluon-antighost vertex, ΓGV Ḡ, and its gen-
eralized Feynman rule, it is again self-consistent (though
not the most general solution) to assume a pure fabc color
structure, the Lorentz structure then being given by[

Γ
[r,0]

GV Ḡ
(p, k,−p′)

]µ
abc

= ifabc
[
pµF̃

[r,0]
0 (p, k,−p′)

+kµF̃ [r,0]
1 (p, k,−p′)

]
(3.1)

The dimensionless invariant functions F̃i, with perturba-
tive limits F̃ (0)pert

i = δi0, depend on the invariants p2,
k2, p′2. Fig. 5 shows the diagrammatic form of the DS
equation for ΓGV Ḡ in its ghost channel, i.e., with the “G”
leg as the unsymmetrically distinguished leftmost leg. It
again features a four-point amplitude T ′

GV V Ḡ
which is 1PI

in only the “horizontal” channel. Residue-taking both in
this equation and in the corresponding equation in the
antighost channel again reveals the presence of compen-
sating poles in T ′, and taking these into account one again
obtains a rearranged form of the equation as in Fig. 5(b).

When staying strictly in Landau gauge, as we do in
this paper, it is actually unnecessary, as far as the self-
consistency of the generalized Feynman rule is concerned,
to evaluate the terms on the r.h.s. of Fig. 5(b) in detail:
brief inspection shows that the latter, at ξ = 0, do not
sustain nonperturbative Λ terms. Consider e.g., term (B)G
of Fig. 5(b) with the momentum assignments shown. Its
upper ΓGV Ḡ vertex has, by (3.1), Lorentz structure

(p′ − q2)λF̃0 + qλ2 F̃1. (3.2)
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The internal gluon line carrying momentum q2 has, in Lan-
dau gauge, a transverse projector tκλ(q2) so that only the
p′λF̃0 portion survives. But p′ is an external momentum
not running in the loop, so the integrand loses one power
of the loop momentum as compared to standard power
counting. Since the loop had only logarithmic divergence
to begin with, it is now actually convergent. Analogous
arguments apply to the term (C)G of Fig. 5(b). The only
possible nonperturbative modifications are therefore those
from term (A)G, if any. These must have at least one de-
nominator factor

(
p2 + ũ′1,2Λ

2
)

in the momentum variable
of the leftmost (ghost) leg. But the same argument applies
to the two alternative forms of the ghost-vertex equation
not displayed in Fig. 5, with the “antighost” (momen-
tum −p′) and gluon (momentum k) lines, respectively, as
leftmost legs. The only nonperturbative terms in the F̃
invariant functions of equation (3.1), that are candidates
for self-consistency, are therefore those proportional to

Λ6(
p2 + ũ′1,2Λ

2
)(
k2 + u′1,2Λ

2
)(
p′2 + ũ′1,2Λ

2
) .

These terms, however, make the loop appearing in term
(A)G of Fig. 5(b) convergent. Since the self-reproduction
mechanism of eqs. (1.7/1.8) is dependent upon the 1

ε di-
vergence factor, the amplitude cannot develop any zeroth-
order nonperturbative terms in Landau gauge:[

Γ
[r,0]

GV Ḡ
(p, k,−p′)

]µ
abc

= ifabcp
µ =

(
Γ

(0)pert

GV Ḡ

)µ
abc

(ξ = 0, all r). (3.3)

The effect is, of course, basically familiar from perturba-
tion theory: there, the one-loop divergence of the renor-
malization constant Z̃1 vanishes at ξ = 0. The preced-
ing discussion merely serves as a reminder that in the
present context such special divergence reductions also
have qualitative dynamical consequences as they suppress
the divergence-related self-consistency mechanism. For an
amplitude with unphysical degrees of freedom such as
ΓGV Ḡ, it is of course legitimate to depend on the gauge
fixing in this way.

The ghost-self-energy equation, due to its general di-
vergence reduction as discussed in appendix A.2 of [3], also
has effectively a logarithmically divergent integral. When
evaluated with the purely perturbative vertex (3.3), that
integral can produce no more than the perturbative diver-
gence, so that again no nonperturbative terms are formed:

D̃[r,0](p2) = D̃(0)pert(p2) =
1
p2

(ξ = 0, all r). (3.4)

We see that the assumption of [5] that ghost vertices re-
main perturbative is justified only in Landau gauge.

4 Massless-fermion vertices

In the absence of Lagrangian mass terms for quarks, non-
perturbative mass scales in the two basic fermion vertices

Fig. 6. DS equation for the inverse fermion propagator

ΓFF̄ and ΓFV F̄ can only be multiples of the Λ scale. This
case is technically far simpler than the rather complicated
situation encountered in the presence of additional RG-
invariant scales from “current” quark masses, and is the
only one we consider in this paper.

The DS equation for the inverse quark propagator is
given diagrammatically in Fig. 6. The corresponding ex-
tended Feynman rule at level r = 1, as discussed in the
appendix of [3], is

−Γ [1,0]

FF̄
(p) = p/+ w1Λ+

w3Λ
2

p/+ w2Λ
. (4.1)

Its nonperturbative content is characterized by the three
dimensionless, real parameters w1, w2, w3. Extraction of
the self-consistency conditions for these involves calculat-
ing the divergent parts of the loop of Fig. 6, evaluated with
[1, 0] input elements, and proceeds largely as in the gluon-
propagator case considered in [3]. The resulting equations

w2 = w′2, (4.2)
1
β0

[
4w1 − 4z1

]
= w1, (4.3)

1
β0

[
4w1z1 − 4z2

]
= w3, (4.4)

make reference to the parameters z of the quark-gluon
three-point vertex, ΓFV F̄ . Its transverse-gluon projection
at level r = 1 reads,[
Γ

[1,0]

FTF̄
(−p′, k, p)

]ν =

tνµ(k)
{
γµ + z1

( Λ

p/′ + w′2Λ
γµ + γµ

Λ

p/+ w′2Λ

)
+z2

Λ

p/′ + w′2Λ
γµ

Λ

p/+ w′2Λ

+
Λ2

k2 + ū′2Λ
2

[
z3γ

µ + z4

( Λ

p/′ + w′2Λ
γµ + γµ

Λ

p/+ w′2Λ

)
+z5

Λ

p/′ + w′2Λ
γµ

Λ

p/+ w′2Λ

]}
. (4.5)

Here the notation of [3] for the dimensionless coefficients
has been changed and simplified somewhat, the relation
[3] → this paper being given by

z
[1]
0,1 → z1, z

[1]
0,4 → z2, z

[1]
1,0 → z3,

z
[1]
1,1 → z4, z

[1]
1,4 → z5. (4.6)

We have from the outset omitted all terms that would
lead to conflict with perturbative divergence degrees. For
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Fig. 7. Equivalent DS equations for the quark-
antiquark-gluon vertex in (a) fermionic channel and
(b) gluonic channel

ΓFV F̄ there are two DS equations, one in the “fermionic”
and one in the “gluonic” channel, which are equivalent
for the exact vertex but in general will give rise to dif-
ferent approximations. Rearranged for one-quark-shadow
irreducibility in the now familiar way, these are depicted
in Figs. 7(a) and 7(b), respectively. While each of the two
forms, due to the compensating-poles mechanism, suffers
from “loss of equations” in the sense discussed in Sect. 2.3,
it is interesting that the two forms taken together produce
just the required number of self-consistency conditions [9]:

1
β0

[9
4
z1 −

9
4

1
w3
z1z2 −

1
u3

(15
2
x1 −

5
4
x3

)
z4

+
2
3
NF

1
u3
z3z4

]
= z1 (4.7)

1
β0

[9
4
z2

1 −
9
4

1
w3
z2

2 −
1
u3

(15
2
x1 −

5
4
x3

)
z5

+
2
3
NF

1
u3
z3z5

]
= z2 (4.8)

1
β0

[9
4
z1 −

9
4

1
u3
x1z4

]
= z1 (4.9)

1
β0

[9
4
x3 −

9
4

1
u3
x4z3

]
= z3 (4.10)

1
β0

[9
4
x3z1 −

9
4

1
u3
x4z4

]
= z4 (4.11)

In addition, the quasi-perturbative remainders contain di-
vergences given by

(
Ξ

(1)

FTF̄

)µ
= γµ

[9
4
− 9

4
1
w3
z2

1 −
1
u3

(15
2
x1 −

5
4
x3

)
z3

+
2
3
NF

1
u3
z2

3

]
, (4.12)(

Ξ
(1)

FTF̄

)µ
= γµ

[9
4
− 9

4
1
u3
x1z3

]
, (4.13)

for Figs. 7(a) and 7(b) respectively, which differ from the
perturbative quantity

z
(1)

FV F̄
(ξ = 0) =

9
4

(4.14)

by defect terms involving the vertex constants x and z,
which again cannot be forced to zero at r = 1 but only
asymptotically at large r.

Note that there is no equation determining the vertex-
pole position w′2, which by (4.2) is also the propagator-zero
position.

5 Solution for 2- and 3-point coefficients

5.1 Analysis of equations

The system of self-consistency conditions for the r = 1
nonperturbative coefficients, as established up to now,
consists of eqs. (4.8/4.30/4.31) of [3] for the gluonic self-
energy parameters u1, u2, u3, which now assume1 the sim-

1 Eq. (5.2) corrects for a misprint in (4.31) of the first refer-
ence of [3], where a tadpole contribution −9NCu1,1/4 appears
with the wrong sign
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pler forms

u′2 = ū′2 = u2 , (5.1)

1
β0

[
9
4
u1 −

33
2
x1 +

5
4
x3

−2NF

(
w3 + (w1 + w2)z1 + z2 −

1
3
z3

)]
= u1, (5.2)

1
β0

[
5
2
u2

(
3x1 −

1
2
x3

)
+ 9u1x3 − 9x4

−2NF

(
z3

(
w3 +

1
2
u2

)
+ (w2 − w1)z4 + z5

)]
= u3,(5.3)

plus eqs. (2.43-2.47) above for the 3-gluon-coefficients
x1...x5, plus eqs. (4.2-4.4) and (4.7-4.11) above for the self-
energy coefficients w1...w3 and vertex coefficients z1...z5 of
massless fermions. (In (5.1), ū′2 is the gluonic denomina-
tor parameter from the fermion vertex, defined in (4.5)
above). Its peculiar properties, in particular with respect
to under- and overdetermination tendencies, can be sum-
marized as follows.

(a) One observes that the system as a whole exhibits
a scaling property: any one of the coefficients that is pre-
sumed to be nonzero may be divided out of these equa-
tions, while replacing the others by their ratios to this one
or to a uniquely fixed power of it, and rescaling Λ accord-
ingly. This property, which in a nonlinear system is non-
trivial, is a natural consequence of the scheme-blindness
of the basic self-consistency mechanism: a rescaling of Λ,
which corresponds to a change of scheme, will not change
the form of the zeroth-order conditions. We will choose,
for definiteness, a rescaling by the 3-gluon coefficient x1

of (2.11):

Λ̃2 = x1Λ
2, (5.4)

ũ1 =
u1

x1
, ũ2 =

u2

x1
, ũ3 =

u3

x2
1

,

x̃1 = 1, x̃2 =
x2

x2
1

, x̃3 =
x3

x1
, x̃4 =

x4

x2
1

, x̃5 =
x5

x3
1

,

Z̃1 =
Z1

x1
, Z̃2 =

Z2

x2
1

,

w̃1 =
w1√
x1
, w̃2 =

w2√
x1
, w̃3 =

w3

x1
,

z̃1 =
z1√
x1
, z̃2 =

z2

x1
, z̃3 =

z3

x1
, z̃4 =

z4√
x1

3 , z̃5 =
z5

x2
1

.

(5.5)

The reason for this choice is that by putting x1 = 0 one
would end up with only the trivial solution (all nonpertur-
bative coefficients vanishing), so one is not losing interest-
ing solutions by assuming x1 6= 0. (For the scaling of the
fermionic parameters, we are for the moment assuming x1

to be positive). In effect, the rescaling reduces the number

of unknowns by one while introducing the modified Λ̃ of
(5.4), scaled by an unknown factor.

The rescaled system of fourteen conditions, with fif-
teen unknowns and Z̃1, Z̃2 as external parameters, has
solutions coming in pairs: one checks that if{

ũ1, ũ2, ũ3, w̃1, w̃2, w̃3, x̃2...x̃5, z̃1, z̃2, z̃3, z̃4, z̃5

}
(5.6)

is a solution, then for the same Z̃1 and Z̃2 the set{
ũ1, ũ2, ũ3, −w̃1,−w̃2, w̃3, x̃2...x̃5,

−z̃1, z̃2, z̃3,−z̃4, z̃5

}
(5.7)

is also a solution, which we shall refer to as a “mirror”
solution. Note that this discrete ambiguity affects only
fermionic parameters.

(b) We have not obtained equations fixing the vertex-
denominator parameters (u2 and w2 in the present case).
Neither analysis of the 4-gluon vertex [4] nor, as prelim-
inary studies indicate, use of “resummed” DS equations
will change this situation. We did obtain conditions like
the w′2 = w2 of (4.2), and the corresponding u′2 = ū′2 = u2

of (5.1), which ensure one common pole position in all ba-
sic vertices for a given type of external leg (and also the
presence of propagator zeroes at the positions of vertex
poles), but u2 and w2, in the end, have no determining
equations of their own. This leads to the unexpected con-
clusion that the divergent parts of the momentum-space
DS equations as used up to now do not yet determine the
nonperturbative Λ dependence completely. The reason is
that these equations, in a sense, do not provide enough
divergence. Indeed, the quadratically divergent gluon self-
energy is the only vertex having u2 and w2 appear at least
on the right-hand sides of its self-consistency conditions
for u1 and u3, but at least two more equations with the
same or higher degree of divergence would be needed to
“lift” the two parameters from the denominators of loop
integrands into numerator expressions that provide self-
consistency conditions – a feat that only divergent inte-
grations can perform.

Additional conditions for fixing u2 and w2 therefore
should have general compatibility with the momentum-
space DS equations and provide sufficient divergence. The
only natural candidates here are those requiring the van-
ishing of the “equation-of-motion condensates”, i.e. of vac-
uum expectations of the simplest (dimension four) local
composite operators proportional to the left-hand sides of
the field equations. We use the condensate conditions for
the ghost and fermion fields in the form

(g0ν
ε
0)2 〈0| c̄a(x) {[δab¤+ g0ν

ε
0fabcA

µ
c (x)∂µ]

× cb(x)} |0〉 = 0 (5.8)

(g0ν
ε
0)2 〈0| ψ̄(x) {[i∂/+ g0ν

ε
0A/(x)]ψ(x)} |0〉 = 0 (5.9)

In momentum space these are, of course, nothing but
the ghost and quark propagator equations integrated over
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momentum space, or equivalently, taken at zero separa-
tion in coordinate space. They are therefore obviously
compatible with, and natural completions of, the unin-
tegrated (momentum space) or nonzero-separation (coor-
dinate space) DS equations we have exploited up to now.
In standard integral-equation theory with convergent inte-
grals and well-behaved functions, they would not represent
independent statements, but in a theory with divergent
loop integrals and therefore in need of renormalization,
they do carry new information: since they involve opera-
tors of higher compositeness, they possess new divergences
leading to new zeroth-order conditions on the nonpertur-
bative coefficients. At the r = 1 level these conditions
read,

3
β2

0

[
−u2

1 + u3

]
Λ4 = 0 (5.10)

{
3
β0

[
w4

1 − 4w2
1w3 − 2w1w2w3 − w2

2w3 + w2
3

]
+

2
β2

0

[
u3 − u2

1 − 3u1w3 − 6w4
1 + 12w2

1w3 + 6w1w2w3

+3z1(u1w1 − u1w2 + 4w3
1 + 2w2

1w2 + 2w1w
2
2

−6w1w3 − 2w2w3)

+3z2(−u1 − 2w2
1 − 2w1w2 − 2w2

2 + 2w3)

+z3(u1 + u2 + 3w3) + 3z4(w2 − w1) + 3z5

]}
Λ4 = 0

(5.11)

Condition (5.10), from the ghost equation of mo-
tion, notably provides a restriction on gluonic parame-
ters (it is, incidentally, equivalent to requiring the vanish-
ing of the zeroth-order, dimension-two gluon condensate
〈AµAµ〉, which at r = 1 turns out to be proportional to
−u 2

1 + u3). Since in Landau gauge at one loop it is the
only condition from the ghost sector, is independent of
the presence of fermions, and of remarkable simplicity,
we give it priority in complementing eqs.(5.2/5.3). Con-
dition (5.11) brings in, in addition, the fermionic parame-
ters, and is suitable for complementing eqs. (4.3/4.4). The
order-[1, 0] equation-of-motion condensate for the gluon
field,

(g0ν
ε
0)2 〈0∣∣ [1

2
(
∂µAνa − ∂νAµa

)2
+

3
2

(g0ν
ε
0) fabc

(
∂µAνa − ∂νAµa

)
AµbA

ν
c

+ (g0ν
ε
0)2

fabefcdeA
µ
aA

ν
bA

µ
cA

ν
d + (g0ν

ε
0) fabc

(
∂µc̄a

)
Aµc cb

+ (g0ν
ε
0)NF ψ̄A/ψ

] ∣∣0〉 = 0, (5.12)

is the most complicated, and its zeroth-order form at
r=1,

{
24
β0

[
u2

1 − u3

]
+

1
β2

0

[
− 390u2

1 + 228u3 − 324x4 + 594u1x1

+279u1x3 + 270u2x1 − 45u2x3

]
+
NF
β2

0

[
8u2

1 − 8u3 + 24u1w3 + 48w2
1

−96w2
1w3 − 48w1w2w3

+24z1(−u1w1 + u1w2 − 4w3
1 − 2w2

1w2

−2w1w
2
2 + 6w1w3 + 2w2w3)

+24z2(u1 + 2w2
1 + 2w1w2 + 2w2

2 − 2w3)

−8z3(u1 + u2 + 3w3) + 24z4(w1 − w2)− 24z5

]
+

1
β3

0

[
3-loop-terms

]}
Λ4 = 0, (5.13)

involves the largest number of vertex parameters simulta-
neously. In the present context it cannot be applied in its
exact form; the 3-loop-terms must be omitted for formal
consistency with the omission of 2-loop-terms in the l = 1
gluon-self-energy calculation. For these reasons, condition
(5.13) may be expected to be the most difficult to fulfill on
our level of approximation, and is not one of our primary
choices for completing the self-consistency system. We will
check in the end to what extent it can be accommodated.

(c) Due to the large dimensions and considerable
overdetermination of the 4-gluon self-consistency problem
to be discussed in [4], the total coupled problem cannot,
in our experience, be attacked directly with currently ex-
istent mathematical software tools. However, we have al-
ready emphasized the (also unexpected) result that the
4-gluon-vertex problem couples to the fewer-point ampli-
tudes only through the narrow “bottleneck” of two 4-
gluon-coefficient combinations (2.49/2.50) appearing in
only three of the 3-gluon conditions. This situation of
a near decoupling of the 4-gluon self-consistency problem
renders the following strategy sensible (it is, in any case,
the only practical strategy at present). One omits, as a
first step, the 4-gluon conditions completely, and treats
the parameters Z1, Z2 appearing in (2.45-2.47) as two
additional unknowns in the 2-point-plus-3-point-system,
which thereby becomes doubly underdetermined. Com-
bined with the scaling property of point (a), which ef-
fectively reduces the number of unknowns by one, this
results in an effective one-parameter freedom in the so-
lution of the 2-plus-3-point problem. Since the number of
calculable coefficients – in the present case, fourteen in the
2-and-3-point amplitudes, and seventeen in the “minimal”
four-gluon vertex to be discussed in [4] – is much larger,
the solutions will still be nontrivial and informative; in
particular, one may explore in what range, if any, of this
one-parameter freedom there exist physically acceptable
solutions.

In a second step, which we defer to [4], one may then
adjoin the values of Z1, Z2 thus determined as additional
constraints to the 4-gluon self-consistency problem: this
will represent only a minor increase in the anyway massive
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overdetermination of that problem. Since the 4-gluon sys-
tem refers to the 2-and-3-point coefficients, it inherits the
effective one-parameter freedom, and to within that free-
dom may be dealt with separately, with methods adapted
to its overdetermined nature.

It would seem that any one coefficient or combination
of coefficients of the 2-and-3-point system could be used to
parametrize the effective one-parameter freedom; in par-
ticular, some combination of the quantities (2.49/2.50),
which caused the freedom in the first place, would seem
to be a natural parameter. However, one again faces un-
expected restrictions here: due to the peculiar structure of
the system in its fermionic unknowns, the fixing of a com-
bination of non-propagator parameters, instead of render-
ing the system well-determined, usually splits it into an
over- and an underdetermined part. The parametrizing
quantity should thus refer to propagator coefficients. In
the following we will choose, for no other reasons than
technical simplicity, the rescaled quark self-energy coeffi-
cient w̃1.

(d) At present, the question remains open as to
whether there exists a preferred or natural way of finally
removing the one-parameter freedom. One might think of
recalculating the quantities Z̃1, Z̃2 later from the least-
squares four-gluon solution and see if there is a parameter
range where they agree, at least qualitatively, with those
from the 2-and-3-point solution. We shall indeed do this
in [4], but shall see that in the parameter range where
the entire solution is physically acceptable, a mismatch
is unavoidable at r = 1, although small in the case of a
pure gluon theory. Alternatively, the vanishing of any of
the previously noted approximation errors existing at the
(r = 1, l = 1) level could be used as a condition. The com-
mon problem of all conditions of this kind is that (i) there
are several of them, and any selection from among them
appears arbitrary, (ii) they are mostly so restrictive that
their imposition leaves only the trivial solution, with all
nonperturbative coefficients vanishing. The message the
defect terms seem to convey is that the still rather simple
and rigid structure of the r = 1 system of approximants
entails unavoidable approximation errors that cannot be
forced to zero without overstraining that structure; they
can disappear only gradually as r is increased.

Our (arguable) guideline, then, in choosing conditions
for fixing the zeroth-order nonperturbative coefficients,
is to give priority to the primary DS self-consistency
conditions in the wider sense (including the momentum-
integrated conditions) and to accommodate as many of
these as possible with physically acceptable solutions, but
to live with approximation errors in all other secondary
conditions, such as desirable structures of order-g2 terms,
differential ST relations, etc.

5.2 Discussion of solutions

The system augmented by (5.10) at a fixed value of w̃1

may be reduced by successive elimination to an algebraic
equation of the 10th degree for the quantity w̃3. The other

coefficients can then be calculated recursively from the so-
lutions of this equation and (5.11), and depend paramet-
rically on w̃1. (These calculations have been performed
using the MAPLE V computer-algebra system). The fol-
lowing noteworthy features emerge.

(a) When assuming x1 < 0 and performing the rescal-
ing (5.5/ 5.4) with |x1| = −x1 instead of x1, the ten roots
obtained for w̃3 are all complex. Such solutions can im-
mediately be discarded as unphysical, since they lead to
vertex functions not real at real Euclidean momenta, and
the nonlinear nature of the system permits no superposi-
tion to obtain real solutions. Therefore no physical solu-
tions have been lost by assuming x1 > 0 and rescaling as
in (5.5/ 5.4).

(b) Over a range 0.3 ≤ w̃1 ≤ 1.2 (all ranges quoted
are approximate) only eight of the ten w̃3 roots come in
complex-conjugate pairs, but two are real: there exist solu-
tions with all vertex coefficients real. This result is entirely
nontrivial, and represents substantial progress over the
earlier attempt of [5], where what we would now call the
r = 1 level of approximation was studied in a more heuris-
tic fashion, with strong a priori simplifications of the ver-
tex approximants, and without taking the compensating-
poles mechanism into account. There, only partly real so-
lutions could be found.

Of the two real w̃3 roots, one is negative and one
positive. The negative w̃3 value always turns out to lead
to “tachyonic” pole positions (negative values of the ρ2

±
of (5.18) below) in at least one of the two propagators,
and can also be discarded as unphysical. Again it is non-
trivial and noteworthy that only one of several solutions
of the nonlinear system stands out as a candidate for a
physical solution. Each of the two real solutions still ex-
hibits the doubling of eqs. (5.6/5.7), i.e. has a mirror so-
lution for some of its fermionic parameters in the range
−1.2 ≤ w̃1 ≤ −0.3.

(c) For the solution in the range 0.3 ≤ w̃1 ≤ 1.2 with
w̃3 real and positive, Table 1 records the nature of the
poles in the Euclidean transverse-gluon and fermion prop-
agators, which now read

D
[1,0]
T (k2) = k2+u2Λ

2

(k2+σ+Λ2)(k2+σ−Λ2) , (5.14)

S[1,0](p/) = p/+w2Λ
(p/+ρ+Λ)(p/+ρ−Λ) , (5.15)

(see eqs. (2.6) and (4.1)).One finds that over a narrower
range of w̃1, namely,

0.5 ≤ w̃1 ≤ 0.9 (5.16)

the solution with the real and positive w̃3 root in addition
fulfills the three inqualities

γ2
V ≡ u3 −

(
u1 − u2

2

)2

> 0,

γ2
F ≡ w3 −

(
w1 − w2

2

)2

> 0, |w1 + w2| > 0, (5.17)

so that both propagators simultaneously exhibit complex-
conjugate pole pairs at k2 = −σ±Λ2 and p2 = −ρ2

±Λ
2,
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Table 1. Ranges of interest for propagator-pole parameters

0.3 < w̃1 < 0.4 0.4 < w̃1 < 0.5 0.5 < w̃1 < 0.9 0.9 < w̃1 < 1.1 1.1 < w̃1 < 1.2

σ̃+ < 0 complex < 0 < 0
σ̃− > 0 conjugate < 0 < 0
ρ̃2

+ > 0 > 0 complex > 0
ρ̃2
− > 0 > 0 conjugate > 0

Table 2. Typical solution with NF = 2

ũ1 ũ2 ũ3 x̃1 x̃2 x̃3 x̃4 x̃5 γV

−0.3604 −0.4884 +0.1299 +1.0000 −8.7433 +8.9088 −3.2607 −6.2711 0.3547

w̃1 w̃2 w̃3 z̃1 z̃2 z̃3 z̃4 z̃5 γF

+0.6749 +0.6749 +0.1202 −0.9561 −0.9356 −0.4282 +0.4094 +0.2242 0.3468

where

σ± =
u1 + u2

2
± iγV ,

ρ2
± =

w2
1 + w2

2

2
− w3 ± i(w1 + w2)γF . (5.18)

Thus there exist solutions in which the elementary exci-
tations of the two basic QCD fields are both short-lived.
In the present framework this is the essential indicator of
confinement, since it implies the vanishing of S-matrix el-
ements with external single-gluon or single-quark legs [5].
We again regard it as nontrivial that a parameter range
should at all exist in which this situation prevails. Note
also that in the gluonic portion of Table 1, there is al-
ways at least one “tachyonic” gluon-propagator pole out-
side the slightly wider range 0.4 ≤ w̃1 ≤ 0.9; we view it as
significant that the only solutions with real vertices and
non-tachyonic gluons have gluon propagators with com-
plex pole pairs. – Over the range (5.16), most of the other
vertex coefficients are only weakly varying.

This interesting solution still has a “mirror” solution in
the sense of (5.7), i. e. in a w̃1 range which is the negative
of (5.16). We are not aware of a theoretical criterion that
would resolve this discrete ambiguity. It appears to be
the remnant of the U(1)L−R invariance of the massless
Lagrangian under different rephasings of the left-handed
and right-handed quark fields, which gets broken down to
a Z2 (with elements φL − φR = 0 or π) by the dynamical
generation of chirally noninvariant terms in our fermion
functions, the φL − φR = π giving an invariance of the
self-consistency equations when combined with Λ→ −Λ.
This ambiguity is shared by quantities like the r = 1,
zeroth-order fermion condensate(

g2
0

〈
0|Ψ̄Ψ |0

〉 )[1,0]

=
12
β0

(
w 3

1 − 2w1w3 − 2w2w3

)
Λ3 ,

(5.19)

as a prototype chirally noninvariant matrix element. In
quantities which are in principle observable, only com-
binations insensitive to this mirror ambiguity would be
expected to occur.

(d) Upon imposing condition (5.13), from the gluonic
equation of motion, to remove the residual freedom in the
w̃1, we find values w̃1 not only outside the range (5.16)
but in fact outside the larger range of Table 1, where w̃3

and thus the entire solution ceases to be real and phys-
ically acceptable: enforcing (5.13) one loses the possibil-
ity of a physical solution and of all the features noted in
(c). Thus (5.13), like removal of the order-g2 defect terms
noted above, seems to be a strongly restrictive condition
that the simple r = 1 structure is too rigid to accommo-
date.

Within the general strategy suggested and used here,
it appears that restriction to the quite limited parame-
ter range where all propagator singularites are complex
conjugate, and none tachyonic, in itself represents a sen-
sible limitation to the one-parameter freedom, and one
that is difficult to narrow further without overburdening
the r = 1 approximation.

(e) For use of the generalized Feynman rules in appli-
cations, we list in Table 2 a typical set of two-point and
three-point vertex coefficients for NF = 2, for w̃1 chosen
in about the middle of the range (5.16). (Since in that
range w̃2 varies slowly and is itself of modulus ≈ 0.7, we
choose the point w̃1 = w̃2 for simplicity.) This set still
needs completion through the corresponding four-gluon
vertex coefficients ζi, but since many lower-order calcu-
lations need at most 3-point vertices, it seems legitimate
to defer presentation of these to [4]. The propagator-pole
parameters (5.18) for this solution are

σ± = (−0.4245± i0.3547)Λ̃2 ,

ρ2
± = (0.3353± i0.4679)Λ̃2 . (5.20)

For purposes of comparison, we also briefly look at
solutions for the pure-gluon theory (NF = 0). Here the
parametrizing quantity may be taken to be the gluonic
vertex coefficient x̃3, and again we choose a typical value,
x̃3 ≈ 1, from the (again existing) range in which the glu-
onic propagator poles are complex conjugate. (The value
x̃3 = 1, incidentally, is also one which symmetrizes, though
not removes, the defects of (2.52) in the perturbative
three-gluon divergence). Table 3 lists coefficients for this
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Table 3. Typical solution for pure-gluon system

ũ1 ũ2 ũ3 x̃1 x̃2 x̃3 x̃4 x̃5 γV

−1.7429 +0.8456 +3.0376 +1.0000 −6.1825 +1.0000 −4.8682 +28.605 1.1650

case. It is still impossible here to accommodate condition
(5.13) in a physically acceptable solution. Note however
that this solution is now unaffected by the doubling of
(5.7).

The identity (2.10) as applied to the [r, 0] functions
(2.5) and (2.11) would imply the relations

x̃3

ũ2
= 0,

x̃4

ũ2
+ x̃1 = 0,

x̃5

ũ2
+ x̃2 = −ũ3 .

(5.21)

In the typical solutions of Tables 2 and 3, all three rela-
tions have large errors, in the sense that the violations are
of roughly the same magnitude as typical x coefficients
themselves. The same is true for other approximation er-
rors such as the perturbative-limit deviations in the one-
loop divergence of (2.52); one sees that the r = 1 approx-
imants with their relatively small numbers of coefficients
are still far from being able to satisfy all the additional
restrictions one would like to implement.

For the system with NF = 2, there are several indica-
tions that the approximation substantially exaggerates the
effects of the massless-fermion loops on the zeroth-order
vertices. In particular, for the three-gluon vertex coeffi-
cients, almost no trace remains of the pattern of signs and
orders of magnitude established by the pure-gluon system
– a much stronger effect than one would expect from, say,
the NF contributions to one-loop renormalization-group
functions. Another aspect emerges in Fig. 8 where the
transverse-gluon propagator function DT (k2) (in units of
Λ̃−2) is plotted for the typical solutions of Tables 2 and 3.
The value at k2 = 0 is in general a finite constant whose
sign is determined by the u2 parameter; it is positive for
the pure-gluon system. The quark-antiquark self-energy
contributions with their negative signs generally tend to
lower the value of DT (0), but Fig. 8 shows that their effect
here is greatly overestimated so that they pull the value
down to zero “too early”, i.e. somewhat into the Euclidean
domain, resulting in a violation of reflection positivity in
a small neighborhood of k2 = 0. In [4] we will encounter
more indications that the solution with fermions at r = 1
seems to meet extra difficulties not yet present for the
pure Yang-Mills case.

6 Conclusion

We have demonstrated the feasibility of a self- consistent
determination of generalized Feynman rules, accounting
for the nonperturbative Λ dependence of correlation func-
tions through a modified iterative solution, at the simplest
level of systematic approximation of that dependence. We
have shown, and regard it as nontrivial, that the nonlin-
ear self-consistency problem admits physically acceptable

Fig. 8. Transverse gluon propagator Λ̃2 ·DT (x) as function of
dimensionless variable x = k2/Λ̃2 for NF = 0 (upper curve)
and NF = 2 (lower curve). Abscissa unit is ∆x = 0.4, abscissa
range x = −6.0 . . .+ 8.0

solutions, that these stand out clearly against a major-
ity of unphysical ones, and that there exist solutions in
which both of the elementary excitations of the basic QCD
fields exhibit the short-ranged propagation described by
complex-conjugate propagator poles.

It is useful to recall the restrictions under which we
have studied this self-consistency problem. We have con-
sidered the r = 1 level of rational approximation of the
Λ dependence – the lowest level of interest for a “con-
fining” theory like QCD. The limitations inherent in this
low approximation order have become clearly visible; its
structure is far too simple and rigid to satisfy all desirable
conditions and restrictions simultaneously. In particular,
we have seen indications that the r = 1 approximation for
the system with massless fermions (NF = 2) fares worse
than for the pure-gluon system, as it exaggerates the ef-
fects of closed fermion loops.

We have worked with the “ordinary” DS equations
only, with bare vertices on their distinguished, left-hand
external legs. We have evaluated the self-consistency con-
ditions on the one-loop level, in Landau gauge, and with a
special decoupling of the 4-gluon-conditions as suggested
by the peculiar “bottleneck” structure of the system. It is
desirable for future work to gradually remove these lim-
itations, and in particular to study the Bethe-Salpeter-
resummed forms of the vertex equations, which may have
more of the important physical effects shifted into the low
loop orders.

Even with such improvements, two problems are cer-
tain to persist that have emerged clearly from the present
study. One, which arises only when studying vertices with
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at least three legs, and has nothing to do with the specifics
of the present method, is the overdetermination dilemma
unavoidable when seeking approximate-but-symmetric so-
lutions to the not manifestly symmetric DS equations.
This may be “swept under the rug” by trivial symmetriza-
tions, but only at the expense of depriving oneself of an
important measure of error. Note that we have neverthe-
less managed to keep our zeroth-order three-point vertices
symmetric, the problem being one of order-g2 terms.

The second problem is that the DS equations, through
their divergent parts, do not fix the common set of denom-
inator parameters of the approximants. A way of under-
standing this interesting result is to recall the relation with
the operator-product expansion, as discussed in Sect. (2.3)
of [3]: the OPE, in its higher orders, contains vacuum ex-
pectations of local operators of arbitrarily high composite-
ness, whereas the DS equations contain at most insertions
of three operators at the same spacetime point. The ex-
tra composite-operator renormalizations required by those
higher condensates represent extra information which the
usual DS system does not supply directly. Equation-of-
motion condensate conditions, which do represent state-
ments about quantities of higher compositeness, are capa-
ble of supplying the extra information, and natural com-
plements insofar as they are special, zero-separation cases
of DS equations. Their role, which in the present context
may still look marginal, will clearly become more central
when going to higher levels r.

It should be kept in mind that for a confining field sys-
tem such as QCD, the generalized Feynman rules as con-
sidered here allow only the calculation of off-shell Green’s
functions of the elementary fields. These still carry little
observable information, although the spectrum of the ele-
mentary excitations as determined by the singularities of
the two-point-functions does constitute important qualita-
tive information. To calculate on-shell amplitudes, whose
external legs are bound states, one would need in addi-
tion bound-state vertices to sit at the outer corners of
S-matrix diagrams. These have not been touched upon
in this paper, since they are conceptually quite different
from the zeroth-perturbative-order quantities: they arise
from partial (ladder or improved-ladder) resummation of
quasi-perturbative corrections g2p Γ

(r,p)
N , with p ≥ 1, for

certain superficially convergent amplitudes ΓN , in which
the mechanism of (1.8) plays no role. Their determina-
tion must therefore rely on the established Bethe-Salpeter
methods for bound states.

On the other hand we do believe that the calculations
described here achieve something new by dealing with
the complete set of superficially divergent QCD vertices
in one consistent approximation, and that they demon-
strate a nontrivial, renormalization-related way of how the
renormalization-group invariant mass scale establishes it-
self in the correlation functions of an asymptotically free
theory.

One of the authors (M.S.) is grateful to D. Schütte for an
invitation and for support to attend the 1997 Bonn Workshop
on Confinement where parts of this paper were written.
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